
Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 1 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Lesson 6
Subroutines

Overview

Introduction Often we have logic we wish to use several places in our programs. The subroutine
provides a way to do this effectively. In this section, we will review subroutines, and
look at delay timers, which is one example of where we may use subroutines.

In this section Following is a list of topics in this section:

Description See Page

Why we want subroutines 2

Why we don't want subroutines 3

Stack 4

Instructions for building subroutines 5

Let's try this out 6

Using the Subroutine 8

Timing Loops 12

Wrap Up 14

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 2 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Why we want subroutines

Introduction In this section, we will take a look at the advantages of framing our code as
subroutines.

Rework In developing programs, we often find that the same kinds of logic appears over and
over again. By placing this logic in a subroutine, we only need to write the code
once. It can then be used over and over within our program.

Reliability Subroutines, when well thought out, are standalone little packages of logic. As such,
they can be tested independently, and we can be assured that they do what we expect.
We can then use them over and over with confidence, and without the need to
constantly debug them.

Readability Assembler programs tend to get somewhat long and gangly. By breaking our logic
into functionally complete modules, we can make our programs a lot easier to
understand.

Debugging By breaking our code into logical modules, we can debug them more or less
independently. This greatly improves the debugging process, as it helps us to focus
on one small area. It also gives us a degree of confidence that the other parts of the
program can be ignored for the time being.

Memory Since this logic we are re-using appears only once in program memory, subroutines
can help reduce the program memory demands of our application.

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 3 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Why we don't want subroutines

Introduction While subroutines have their place, there are reasons to avoid their use. Here are just
a few.

Complexity If we are going to make maximum use of subroutines, our logic needs to be made a
little more flexible. Depending on the particular situation, this can mean our logic is
more complex than it might be, had we used to same algorithm in line.

Performance Whenever we call a subroutine, we need to have the initial logic we might have put in
line, plus, we need to call the subroutine and get back from it. While this overhead
isn’ t great, it is overhead, and it can be an issue in a timing sensitive situation. The
total penalty amounts to 4 microseconds with a 4 MHz crystal, or 800 ns with a 20
MHz PIC.

The other issue is that the complexity we mentioned above can lead to reduced
performance, as well. This depends on our logic, of course, but it can also be a factor
in places where we are pressed for cycles.

System
Limitations

Some of the real power of subroutines comes from having a subroutine call another
subroutine, which may call another subroutine. This nesting of subroutines can have
a dramatic impact on the amount of code we need to write. Unfortunately, the PIC
has a has a stack only eight elements deep, which means we can only nest our
subroutine calls seven or eight deep. While this isn’ t a real common problem, we do
need to be cognizant of just how deeply we are nesting subroutines.

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 4 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Stack

Introduction Almost all computers have a special construct called a stack. In some computers, the
stack is implemented in the main memory, and there are special pointers to allow for
stack specific instructions. In the case of the PIC, the stack is a special hardware
memory. Because of the Harvard architecture (remember this from lesson 1?), there
are no instructions for directly manipulating the stack. There are instructions which
do affect the stack, but we can’ t actually look at the stack programmatically. (The
PIC18 series of microcontrollers do include instructions for directly manipulating the
stack.)

What is a stack A stack is a special memory which is addressed in a special way. Instead of
accessing the stack by an address, like other memory, a stack can only be accessed at
the “ top” . The model is very much like a stack of paper. You an “push” data onto
the top of the stack, or “pop” data off the top of the stack, much like you would place
a piece of paper onto the top of a pile, and remove it from the top.

However, unlike a pile of paper, you cannot slide a piece of data into the middle of
the stack, nor can you reach in and slide a piece of data out of the middle. You can
only access the stack from the top.

The PIC Stack In the PIC16 parts, the stack is 13 bits wide by 8 words deep. This means that the
stack can hold eight program memory locations, and can address the program
memory space of any of the PIC16 parts.

Instructions
affecting the
stack

The PIC16 instruction set contains no instructions for directly manipulating the stack
or the stack pointer. However, there are a few instructions which affect the stack.
These are: cal l , r et ur n, r et l w, and r et f i e. In addition, an interrupt affects
the stack.

We will talk about interrupts and the r et f i e instruction later in the course. In this
lesson, we will examine the cal l , r et ur n, and r et l w instructions.

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 5 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Instructions for building subroutines

Introduction Here we will examine the three instructions that we will use to create subroutines; the
cal l , r et ur n, and r et l w instructions.

The call
instruction

Whenever we want to use a subroutine, we execute a cal l instruction. The cal l
instruction is just like a got o instruction, except that before jumping, the current
program counter is pushed onto the stack. Since the program counter is incremented
as soon as an instruction is loaded by the PIC, this value is one higher than the
program counter value for the cal l .

The return
instruction

The r et ur n instruction does the opposite. The r et ur n instruction loads the value
at the top of the stack into the program counter. This causes the next instruction to be
executed to be the instruction after the original cal l .

The retlw
instruction

Quite often, we would like a subroutine to not only do something, but to return some
result to the calling program. This is exactly what the r et l w instruction does. This
instruction loads a literal value into the working register, and then behaves just like a
r et ur n instruction.

Putting this
together

The cal l /r et ur n pair provides a way to jump out of our main program, do
something, and then come back to where we left off. The structure typically looks
something like the following:

 Do some stuff
 cal l MySub
 Do some other stuff
 ~ ~ ~ ~
MySub
 Do some stuff
 r et ur n

Typically, the subroutines are grouped together at the start of the program file, and a
got o instruction skips around them to the start of the main logic. There is no rule
that says it has to be this way, but there are times when it is convenient for
subroutines to be near the front, and keeping all the subroutines together makes for
greater readability.

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 6 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Let's try this out

Introduction In order to start this new experiment, guess what? We need to create a new project
(Lesson6a), and a new assembler file (Lesson6a.asm). Just like we did before.

Our first
subroutine

Insert the following code into the assembler file:

 pr ocessor PI C16F84A
 i nc l ude <p16f 84a. i nc>
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 cbl ock H' 20'
 Spot 1 ; A var i abl e t o pl ay wi t h
 endc

 got o St ar t ; Ski p t o mai nl i ne

; Our subr out i ne begi ns her e
Sub1
 i ncf Spot 1, F
 r et ur n
; Her e i s t he st ar t of t he mai nl i ne
St ar t
 movl w H' f c ' ; Put somet hi ng i n
 movwf Spot 1 ; Spot 1
Loop
 cal l Sub1 ; Cal l t he subr out i ne
 got o Loop ; Do i t agai n

 end

You should be able to cut and paste the above code, although you may have to clean
up the tabs a bit. Use the I-beam tool at the top of your PDF reader:

Running the
Program

After assembling the program, open the Stack window (Vi ew- >Har dwar e
St ack). Pressing F7 three times should bring you to the cal l instruction. Notice
that the stack window hasn’ t changed. Also notice that the program counter at the
bottom of the window shows pc:0x5. Press F7 once more. A lot happens. The
program counter goes to 1, and a 6 gets placed on the stack (5 plus 1). The next step
increments a file register location, but the next one returns to the instruction after the
call (pc:0x6), and the stack pointer returns to point to ‘Empty’ .

Notice that the stack now contains two 6’s. This is actually trash. Whatever is on the
stack below the stack pointer (the green arrow) simply doesn’ t matter. If we do a
call, we’ ll overwrite what is there, and we can’ t do a return because there is nothing
left to pop.

 Continued on next page

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 7 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Let's try this out, Continued

Nesting
Subroutines

Let’s examine what happens when we call one subroutine from another. Change our
subroutine to look like the following:

; New subr out i ne begi ns her e

Sub2
 i ncf Spot 1, F
 r et ur n
; Or i gi nal subr out i ne begi ns her e
Sub1
 cal l Sub2
 r et ur n

And again, assemble it.

The new code has moved our original cal l instruction down to location 7, so the
cal l places an 8 on the stack. The new cal l is at location 3, so a single step puts a
4 at the top of the stack. Notice that everything else is pushed down.

The next step increments Spot 1, nothing very exciting there, but yet another step
executes the r et ur n, changing the program counter to 4, and removing the 4 from
the top of the stack. Clicking again, removes the 8 (which has now risen to the top)
and sets the program counter to 8.

We can nest subroutines like this, and make successive cal l s, and the stack
mechanism will keep track of where we came from with little worry. However, we
can never be more than 8 levels deep or the stack will overflow (and our program will
do strange things!)

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 8 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Using the Subroutine

Introduction We said earlier that subroutines can help us break our program into manageable
pieces. Let’s do an example.

Begin, as usual, by creating a new project, Lesson6b.

Program
Structure

PIC programs are almost always intended to do the same thing over and over again.
As a result, our programs almost always look a little like:

So, we can start almost every program out with code that looks something like:

 pr ocessor pi c16f 84a
 i nc l ude <p16f 84a. i nc>
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 got o St ar t ; Ski p t o mai nl i ne

St ar t

Loop
 got o Loop
 end

OK, certainly we are going to end up with a cbl ock at the front, too.

 Continued on next page

Initialize

Do
Something

Start

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 9 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Using the Subroutine, Continued

The main loop Let’s suppose that we want to write a program for the PIC-EL which is going to send
the word TEST in Morse code over and over again out the transmitter port. With
what we have leaned so far, that may seem like a pretty tall order. But by breaking
the problem down into small, logical pieces, and breaking those pieces down again
and again, we can eventually get to a point where we can envision the code.

We might imagine that our mainline is going to look a bit like the following:

Loop
 cal l SendT
 cal l SendE
 cal l SendS
 cal l SendT
 cal l Wor dSpace
 got o Loop

Getting from the concept to the code is the second hardest part of developing PIC
applications. The subroutine idea can go a long way to helping us.

(The hardest part is coming up with the concept in the first place!)

Sending the
letters

OK. Now we need to send the letters. Well, again, if we think about this problem at
a high enough level, it’s pretty simple:

; Send t he l et t er T
SendT
 cal l Dah
 cal l Let Spc
 r et ur n
; Send t he l et t er E
SendE
 cal l Di t
 cal l Let Spc
 r et ur n
; Send t he l et t er S
SendS
 cal l Di t
 cal l Di t
 cal l Di t
 cal l Let Spc
 r et ur n

We’ve gone down another level, and we’ve assumed we’ re going to write a few more
routines; one to send a dit, one to send a dah, and one to wait for the period of time
we want between letters.

 Continued on next page

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 10 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Using the Subroutine, Continued

Sending the
elements

Now we need to figure out how to send the elements that make up the Morse letters.
That shouldn’ t be so tough. Maybe something like:

; Send a Dah
Dah
 cal l Xmi t On
 cal l DahTi me
 cal l Xmi t Of f
 cal l Di t Ti me
 r et ur n
; Send a Di t
Di t
 cal l Xmi t On
 cal l Di t Ti me
 cal l Xmi t Of f
 cal l Di t Ti me
 r et ur n

This is starting to get pretty involved, but by applying subroutines, we really haven’ t
done anything particularly hard.

Keying the
Transmitter

OK, now it’s time for the big disappointment. Here we are, rolling along, but we’ re
not ready, just yet, to talk about manipulating the PIC’s I/O pins. So for now, we’re
simply going to manipulate a single bit in memory instead of the transmitter.

First we need a word to store that bit:

 cbl ock H’ 20’
 Out put
 endc

and we’re going to define the particular bit we set:

XMTR equ H’ 07’

And we need to initialize the Out put variable:

St ar t
 c l r f Out put ; I ni t out put of f

And we need routines for turning the transmitter (bit) on and off:

; Tur n on t he t r ansmi t t er
Xmi t On
 bsf Out put , XMTR
 r et ur n
; Tur n of f t he t r ansmi t t er
Xmi t Of f
 bcf Out put , XMTR
 r et ur n

 Continued on next page

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 11 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Using the Subroutine, Continued

Element timing Now all we have left are subroutines to set the time between our various elements.
We want to define all of these from the dit time, so we want some routines like the
following:

; Del ay a di t t i me
Di t Ti me
 nop
 r et ur n
; Del ay a dah t i me
DahTi me
 cal l Di t Ti me
 cal l Di t Ti me
 cal l Di t Ti me
 r et ur n
; Del ay a l et t er space
Let Spc
 cal l DahTi me ; OK, t oo l ong
 r et ur n
; Del ay a wor d space
Wor dSpace
 cal l DahTi me
 cal l DahTi me
 r et ur n

For now, we are making our dit time pretty short … a call plus a nop plus a return is
only 5 cycles, or just over 1 microsecond at 20 MHz. We’ ll work on that later.

Testing Now, if you assemble the program and run it, you can watch the single bit in the file
register memory (H’20’) flash out T E S T in animate mode. (You may want to
download the program from amqrp.org rather than typing).

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 12 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Timing Loops

Introduction It’ s an odd thing, for a lot of our programs, the PIC will spend most of it’ s time
wasting time. Here we are going to look at how to waste time!

Make yet another project, Lesson6c, but instead of adding an empty Lesson6c.asm
file, copy Lesson6b.asm to Lesson6c.asm and add the filled up Lesson6c.asm to your
project.

Counting the
hours

Let’s see if we can burn enough time with a simple loop. By my calculations, 20
WPM code means about 55 milliseconds per dit. Add a new variable, L1, and
change Di t Ti me to look like the following:

Di t Ti me
 movl w H' 00'
 movwf L1
Di t Ti me1
 decf sz L1, F
 got o Di t Ti me1
 r et ur n

This will spend a lot of time looping around in Di t Ti me1. Now, we could calculate
how long this loop will take. Each instruction takes 4 cycles at the crystal frequency,
unless that instruction changes the program counter, in which case, it will take twice
that. As an example, every time through the loop, the decf sz instruction will take
four cycles except the last time, when it does the skip. On the last loop, the decf sz
instruction will take 8 cycles.

If we are using a 4 MHz crystal (as we are in the PIC-EL), one instruction, four
cycles, conveniently works out to 1 microsecond.

The MPLAB IDE includes a stopwatch feature, however, which allows us to simulate
how long a particular piece of code will take.

 Continued on next page

Subroutines Elmer 160
Lesson 6 Elmer 160 Lesson 6.doc

Revised: 01 Jan 2004 - 05:04 PM Page 13 of 14
Printed: 01 Jan 2004 - 05:04 PM John J. McDonough, WB8RCR

Timing Loops, Continued

Stopwatch Assemble the modified program. In the DahTi me subroutine, add a breakpoint
before each of the cal l Di t Ti me calls.

Now, Select Debugger - >St opwat ch from the menu. Check that the processor
frequency is shown as 4 MHz. If not, select Debugger - >Set t i ngs and set the
processor to 4 MHz on the Clock tab.

Run the program to the first breakpoint. Click Zero on the stopwatch. Now run the
program until the next breakpoint. The stopwatch will measure how long it will take
to call the Di t Ti me routine and return. 773 microseconds sounds like a long way
from 55 milliseconds.

What if we put another loop inside of our first loop? This way we can waste a lot of
time a lot of times!

Just after Di t Ti me1 try something like:

 movl w H' 00'
 movwf L2
Di t Ti me2
 decf sz L2, F
 got o Di t Ti me2

Running the experiment again gives us something like 197 msec. Too slow, but at
least we’ re on the same planet. If we change our outer loop constant to H’47’ ,
though, we will come in to our 20 word per minute time.

In this case, we really only wanted one timer, and everything else was based off of
that. In some other cases, we may want a timer to click off, say, a millisecond, and
have other timers of 100 msec., 1 second, 1 minute, etc.

Elmer 160 Subroutines
Elmer 160 Lesson 6.doc Lesson 6

Page 14 of 14 Revised: 01 Jan 2004 - 05:04 PM
John J. McDonough, WB8RCR Printed: 01 Jan 2004 - 05:04 PM

Wrap Up

Summary In this lesson, we have looked at subroutines, and we have studied how the
subroutine concept can help us break a fairly complex problem down into small,
manageable pieces.

We also took a look at timing loops, and got an idea about how an actual application
might look.

Coming Up In the next lesson, we are going to go back and revisit the status word to see how it
can help us overcome the limitation of only having variables with 256 possible
values.

